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Abstract. Ecologists attempt to understand the diversity of life with mathematical models. Often,
mathematical models contain simplifying idealizations designed to cope with the blooming, buzzing
confusion of the natural world. This strategy frequently issues in models whose predictions are
inaccurate. Critics of theoretical ecology argue that only predictively accurate models are successful
and contribute to the applied work of conservation biologists. Hence, they think that much of the
mathematical work of ecologists is poor science. Against this view, I argue that model building is
successful even when models are predictively inaccurate for at least three reasons: models allow
scientists to explore the possible behaviors of ecological systems; models give scientists simplified
means by which they can investigate more complex systems by determining how the more complex
system deviates from the simpler model; and models give scientists conceptual frameworks through
which they can conduct experiments and fieldwork. Critics often mistake the purposes of model
building, and once we recognize this, we can see their complaints are unjustified. Even though
models in ecology are not always accurate in their assumptions and predictions, they still contribute
to successful science.

Introduction

In this essay, I explore how simple models in theoretical ecology can be used to
investigate and learn about complex populations, communities, and ecosys-
tems. There are prima facie difficulties with using simple models to uncover the
patterns and mechanisms of populations and communities, which many phi-
losophers and ecologists have drawn our attention to. Most models in ecology
are highly idealized; the systems the models represent are often quite complex.
Thus, estimating the parameters and variables of the models so they can be
experimentally tested can be extremely difficult. If models are idealized and are
hard to test, then how can theory based on these models be successful, and how
do we evaluate their purported success? Critics have argued that if model
building is to be a successful part of ecology, especially applied ecology, then
these mathematical models must be predictively accurate. Predictive inaccuracy
here has been construed in a broad sense: mathematical models are not pre-
dictively accurate when they issue no predictions, cannot be tested, or fail their
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respective tests (see Simberloff 1983; Strong 1983; Peters 1991; Shrader-
Frechette and McCoy 1993).

I argue for a pragmatic approach in understanding the success and evalua-
tion of ecological modeling.1 On my view, model building is first and foremost
a strategy for coping with an extraordinarily complex world. In order to
understand the role of models in ecology, one must understand what models
are used to do and what the aims of theoretical ecology are. First, I consider
the worries of the critics and will attempt to show how we can dispel some of
the current skepticism. Second, I will sketch several important uses of models
in theoretical ecology. Critics often mistake what the purposes of model
building are and hence what it can accomplish. If the sole aim of model
building in theoretical ecology was predictive accuracy, then their worries
might give us pause. However, once we recognize that mathematical models are
used for a variety of purposes, we can see that the critics’ complaints are
unjustified. Finally, I respond to a worry about the ‘theories as tools’ approach
offered by Daniel Simberloff.

Models and idealizations

I will focus onmathematical models in ecology, though not all ecological models
are mathematical (Downes 1992; Griesemer 1990). We can represent these
models with deductively closed sets of assumptions. As an example, x is a Lotka–
Volterra predator–prey system if and only if, x obeys the laws of succession

dV=dt ¼ rV" aVP;

dP=dt ¼ baVP" qP;

where V and P are the prey and predator abundances, respectively, a is the
capture efficiency of the predator, b is the conversion efficiency of predator, r is
the intrinsic rate of increase of the prey, and q is the mortality rate of the
predator.2 We can formulate theoretical hypotheses concerning models and
empirical systems. For instance, we might claim that some of a model’s partic-
ular assumptions or predictions accurately represent certain aspects of a given
empirical system.

1See Boyd and Richerson (1988), Caswell (1988), Cooper (1990), Levin (1980, 1981), May (1981),
Pielou (1981), Roughgarden (1984), and Wimsatt (1987) for similar approaches. For a philo-
sophical account of science that emphasizes the strategies of science, models and representation,
and a sensible realism, see Godfrey-Smith (2003).
2When modelers and mathematicians refer to laws of ‘succession,’ they are referring to the rules
governing how the states of the system succeed one another with respect to time. They are not
referring to the phenomena of ecological succession. Thanks to an anonymous reviewer for noticing
this bit of potentially confusing terminology.
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It is a truism amongst ecologists that mathematical models in their science
are idealized. A theory or model is idealized only if the theory or model is an
inaccurate representation of the system of interest. Specifically, a theory or
model is idealized only if the theory or model has some false assumption(s).3

For example, in some evolutionary models, random genetic drift is ignored and
populations are assumed to be effectively infinite in size. This assumption can
ensure that expected reproductive success and actual reproductive success of
some type of organism are one and the same. It is in virtue of ignoring the role
of drift that some selection models are idealized.

Idealizations are false assumptions of models. However, this is necessary but
not sufficient for an assumption to be an idealization. If idealizations were just
false assumptions of theories or models, then all false models or theories would
be idealized. It would be reasonable then for a scientist to always argue that a
useless, false model or theory was just idealized. Clearly though, some theories
or models are not idealized per se but are dead ends. I suggest that a necessary
and sufficient criterion for an assumption to be an idealization is the following:
An assumption is idealized just in case the assumption is false and it is useful
for some purpose to scientists. Moreover, a model is idealized just in case it has
at least one idealized assumption.4

Ecological systems and their properties are extremely difficult to measure
and estimate for several reasons (Brandon 1993). Three of the most important
are worth pointing out. First, most time frames for adequate ecological field-
work and experiments are significantly longer than the time available for
ecologists to conduct their studies (Pimm 1992). This results in part from the
fact that research grants are typically given for relatively short time periods but
ultimately it means that ecologists must conduct their studies on relatively
small time scales (10 years or less).

Second, it is extremely difficult to manipulate ecological systems in system-
atic and controlled ways. There are multifarious factors at work and only some
of them are recognized at any given time. Third, for those systems that can be
manipulated, it is often unclear how they are relevant to systems that cannot be
manipulated. For example, Gause (1935) argued that species of Paramecia
obeyed the competitive exclusion principle as the Lotka–Volterra interspecific

3Assumptions of models concern features of the following form (Bender 1978, 4): (1) the choice of
state variables, (2) the choice of parameters – constant values or random variables, and (3) the
choice of the mathematical form of the laws of succession and coexistence – continuous or discrete,
deterministic or stochastic. In the construction of models, modelers make particular assumptions
about the dynamical systems they are working with. However, these assumptions all come in one of
these forms. What makes an assumption different from a prediction? Predictions are claims made
about the values or configuration of the state variables. The three types of assumptions above do
not concern the values or configuration of the state variables but rather reflect the choice of the
state variables, parameters, and the mathematical form of the laws of the model.
4As a consequence of my definition of ‘idealization,’ it is true that many of what are sometimes called
‘data models’ contain idealizations as well. For example, the species abundance models – broken-
stick, geometric, and lognormal, etc. – of community ecology are data models but are idealized.
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competition model suggests. When P. aurelia and P. caudata were grown in a
mixed culture, P. aurelia excluded P. caudata. Nonetheless, there is serious
doubt concerning the relevance of these systems and their behavior to other
nonlaboratory systems. Laws of succession and coexistence may be true of
some empirical systems but may only apply to very contrived systems designed
to fit the equations of a model (Cartwright 1995). The exportability of scientific
knowledge generated in ‘bottle experiments’ is controversial. If the time frames
of ecological experiments are very short and the ecological systems of interest
are difficult to experiment on, then it is remarkably hard to reliably estimate or
measure the parameters of complex models.

Before I turn to the different uses of models, consider the worries of the
critics of model building (Simberloff 1983; Strong 1983; Peters 1991;
Shrader-Frechette and McCoy 1993). We have seen that some mathematical
models are highly idealized. It is difficult to estimate the parameters of these
models since the relevant time frames for conducting suitable empirical studies
are much longer than those ecologists have available to them; ecological
populations and communities are very difficult to manipulate experimentally;
and the circumstances in which models can be tested against laboratory pop-
ulations are not obviously relevant to natural populations or communities.
Hence, it is very difficult to test these models as well.

The critics’ argument says that if model building in theoretical ecology is to
be successful, and ultimately of use to conservation biologists, then surely these
models must be predictively accurate. However, models in ecology are often
predictively inaccurate: they do not issue predictions, those predictions are
untestable, or the testable predictions are dramatically false (Peters 1991, 17–
73, 178–219; Shrader-Frechette and McCoy 1993, 11–79). It follows, say the
critics, that models are not a successful part of ecology. As Daniel Simberloff
(1981) writes,

Ecology is awash in all manner of untested (and often untestable) models,
most claiming to be heuristic, many simple elaborations of earlier un-
tested models. Entire journals are devoted to such work, and are as
remote from biological reality as are faith-healers.

Ecologist R.H. Peters writes,

If scientific theories are characterized by predictive ability, the branches
of science are distinguished by the objects of prediction. Ecology seeks to
predict the abundances, distributions and other characteristics of
organisms in nature…. This book contends that much of contemporary
ecology predicts neither the characteristics of organisms nor much of
anything else. Therefore it represents neither ecological nor more general
scientific knowledge (1991, 17).

Different critics recommend different ways of coping with the predictive
failure of models. Peters (1991) argues that since predictive accuracy is the goal
of science and should be the goal of ecology, then we should dismiss or severely
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reduce the activity of traditional model building. Shrader-Frechette and
McCoy (1993) argue that modeling should be replaced with case studies that
embody local natural history and autoecology. Last, ecologists Daniel
Simberloff (1983) and Donald Strong (1983) argue that ecologists should be
slow to model processes (such as interspecific competition), or at least to apply
models, unless it has been shown that the relevant null hypothesis is false and
some process to be modeled is in operation. To do otherwise, they argue, is a
poor use of intellectual resources and a departure from a proper Popperian
philosophy of science.

Even without delving into the details of these particular proposals we can see
serious problems with the previous argument. First, many ecological models
can accurately represent some empirical systems in their fit to the phenomena.
We must also remember that claims of predictive accuracy are best construed
as contextual claims. That is, any claim about a model’s predictive accuracy is
relative to three considerations (see Giere 1988, 1999).

(a) the respects in which the model is meant to be an accurate representa-
tion,

(b) the degree to which those respects are supposed to accurately represent
phenomena, and

(c) the system of which the model is supposed to be an accurate represen-
tation.

Moreover, if one writes that a model’s prediction is false, we should take this to
mean that the prediction does not fit the phenomena sufficiently well. The
notion of ‘sufficient fit’ is specified via the context mentioned above and
through statistical methodology. Second, the argument assumes that the most
important function of models is to provide empirically accurate predictions.
However, as I will argue in the next section, models are used to do a variety of
things that do not involve the goal of predictive accuracy. In fact, models can
perform those functions even when they are predictively inaccurate and are
thoroughly idealized. We must evaluate models for performing the tasks that
they are designed for.

Shrader-Frechette and McCoy grant, unlike Peters, that models might
provide the basis for the construction of theory for environmental problem-
solving advice. They write

…Peters is wrong to use prediction as a criterion for, rather than a goal of,
ecological theorizing, because not all sciences are equally predictive… In
overemphasizing the importance of prediction in ecology and science
generally, Peters has erred in underemphasizing the role of explanation
(1992, 109).

There are several problems with this auxiliary argument. First, I will argue that
there are several purposes models in ecology fulfill which do not depend on
models being either predictively accurate or explanatory. In some cases, of
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course, models may be explanatory. For example, if on the basis of a mathe-
matical model, some ecologist offers a how-possibly explanation, then my
account of model functions and an account of explanation may overlap,
However, they need not. On the basis of a model, we may explore chaotic
dynamics without that model thereby explaining a time series of some popu-
lation. Hence, if Shrader-Frechette and McCoy are arguing that model
building in ecology is successful only if mathematical models are either pre-
dictively accurate or explanatory, then this would be false as well. At the very
least, Shrader-Frechette and McCoy would have to show that the only func-
tions of mathematical models in ecology are predictive accuracy and expla-
nation. We may ask, however, whether predictive accuracy is the only function
of mathematical modeling in ecology. As a way to take up this question, let us
now consider what models are used for in theoretical ecology.

A pragmatic approach to models or what are models for?

Models are used for at least four basic purposes in theoretical ecology.5

(1) Models are used to explore possibilities.
(2) Models give scientists simplified means by which they can investigate more

complex systems.
(3) Models provide scientists with conceptual frameworks.
(4) Models can be used to generate accurate predictions.
(5) Models can be used to generate explanations.

I will sketch the first three of these functions with examples from population
and community ecology since they are often ignored in philosophical discus-
sions of models, though I do think models in ecology do satisfy the goal of
predictive accuracy and explanation in many cases.6

Exploring possibilities

One of the ways in which models contribute to ecologists’ understanding of the
biological world is through the exploration of possibilities (Cooper 1990).
Often models are tools that help biologists recognize possible relations between
natural phenomena by tracking relationships between variables and parame-
ters in models. They form the basis for theoretical hypotheses as to what

5I do not mean to suggest that this list is exclusive or exhaustive. However, in reviewing the
literature, these model functions are particularly apparent. It should also be said that a single model
could perform several of these functions at once and at different moments in time.
6See Morgan and Morrison (1999), for an interesting discussion of ‘models as mediators’ that is
similar to the analysis I carry out here. However, contrary to their view, nothing I say here is
inconsistent with the semantic view of theories.
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ecological systems would do under certain circumstances. For example, phi-
losopher of biology Robert Brandon has argued that evolutionary models
provide the basis for ‘how-possibly’ explanations (Brandon 1990).

An example in ecology of this model function comes from the work of
Robert May (1973, 1974, 1975, 1976; May and Oster 1976). May demonstrated
that very simple models of ecological systems could lead to chaotic behavior
where a dynamical system exhibits chaos if it is extremely sensitive to initial
conditions and if its behavior is unstable and aperiodic. May investigated many
different models; however, some of the simplest were discrete difference
equations.

Consider the following discrete logistic equation:

Ntþ1 ¼ Nt þNtR 1"Nt

K

! "
:

May demonstrated that some very interesting behavior would arise for var-
ious values of R, the parameter that describes the population’s per capita rate
of increase. He found that for values of R £ 2.57, the model population
would exhibit stable equilibria and stable cycles. However, if the values of
R>2.57, then there are no stable equilibria or cycles, and with other
assumptions met, the population exhibits a bewildering array of unstable,
aperiodic behavior.7

It is the subject of current research whether ecological systems are chaotic
and how ecologists might determine if they are (Hastings et al. 1987; Cushing
et al. 2003). This, however, is a very challenging undertaking. To see the dif-
ficulties involved, suppose we have a dynamical system that is chaotic and we
are trying to determine some future state N(t+m) where m>0. Normally, one
would determine the initial conditions of the system and enter the values of the
parameters R and K in the discrete logistic and recursively determine the future
state. However, if the system is chaotic, it will exhibit extreme sensitivity to
initial conditions and will be unstable and aperiodic. If these conditions are
met, then slight variations in those conditions can lead to extremely different
dynamics. Unfortunately, we cannot discriminate on the basis of the data what
the actual initial conditions are and will only be able to approximate them. The
measurement error involved in such estimation will ‘hide’ the actual initial
conditions. Hence, it may be impossible to predict the state of the system at
t+m.

Researchers have been analyzing time series to assess the degree to which
such systems are density dependent and sensitive to initial conditions. One way
of quantifying this sensitivity is through a measure called a Liapunov exponent.
Suppose we have an initial population of size N0 and consider a nearby pop-
ulation of size N0 + D0, where D0 is very small. After n time steps we can
examine the sizes of two respective populations, the first starting at N0 and the

7The model is patently idealized. One reason for this is that the population size can become negative
if Nt>K(1+R)/R (May 1974, 645).
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second at N0 + D0. Let |Dn| be the absolute value of their difference. We can
do this again and again for n different time steps and then fit this data to an
exponential model with an elapsed time of n as the independent variable, such
that:

jDnj ¼ jD0jen
k
:

This resulting model has one parameter, the Liapunov exponent k (Case 2000,
116–117). If k<0, then populations are converging on the same pattern as time
goes by; if k>0, then the difference between populations at the initial times is
growing exponentially over time and this is indicative of chaos.

Even if we suppose that this current research will not demonstrate whether
chaos is present in any particular ecological system, the importance of May’s
work is still clear: it counsels that ecologists ought to pay more attention to
nonlinear, unstable, aperiodic behavior. May writes,

That simple models can do complicated things is not a new idea: Poincaré
expressed despair of ever completely understanding the motions of even
trivial mechanical systems. Nevertheless, there is still a tendency on the
part of most ecologists to interpret apparently erratic data as either
stochastic ‘noise’ or random experimental error. There is, however, a
third alternative, namely, that wide classes of deterministic models can
give rise to apparently chaotic dynamical behavior. It is this third pos-
sibility which we elaborate in this paper (May and Oster 1976, 573).

Here we see May concluding that ecologists have been unjustified in assuming
that ‘noisy’ phenomena are the result of either stochasticity or measurement
error alone, and that it is possible that the same phenomena are the result of
deterministic chaos.

This is especially important given the debates among population ecologists
over population regulation. The biotic school as developed by Howard and
Fiske (1911), Nicholson and Bailey (1935) and Smith (1935) argued that
populations are regulated primarily by factors that depend on their density.
The population will increase when low and will decrease when high and thus
average population densities remain stationary. The climatic school pioneered
by Bodenheimer (1928) and most forcefully by Andrewartha and Birch (1954)
argued that populations are driven by changes in the environment like weather
and thus fluctuate greatly. Thus, it appears we have a crucial test of the two
schools: if population densities are stationary, then the biotic school is correct;
if population densities are wildly fluctuating, then the climatic school is correct.
May argues this is fundamentally wrongheaded.

These studies of the Logistic Map revolutionized ecologists’ under-
standing of the fluctuations of animal populations… With the insights of
the Logistic Map, it was clear that the Nicholson-Birch controversy was
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misconceived. Both parties missed the point: population-density effects
can, if sufficiently strong…, look identical to the effect of external
disturbances. The problem is not to decide whether populations are
regulated by density-dependent effects (and therefore steady) or whether
they are governed by external noise and therefore fluctuate). It’s not a
question of either/or. Rather, when ecologists observe a fluctuating
population, they have to find out whether the fluctuations are caused by
external environmental events (for example, erratic changes in tempera-
ture or rainfall), or by its own inherent chaotic dynamics, as expressed in
the underlying deterministic equation that governs the population’s
development (May 2002, 39–40)

Mathematical modeling allows ecologists to explore possibilities.

‘Ridiculous’ models as baselines

Models also allow scientists to investigate systems that are more complex than
the model used. Scientists often employ models that clearly do not display a
statistically significant goodness-of-fit to the phenomena. Nonetheless, these
models serve as a ‘baseline’ for recognizing the important ways in which more
complex phenomena deviate from these simpler representations. One case of
this sort concerns the adaptationism debate in behavioral and evolutionary
ecology. Biologists often use optimality models in which it is assumed that
natural selection is the only important force of evolutionary change. They
recognize that selection is not the only operative mechanism in natural systems,
but simplifying in this way allows them to compare expected behaviors of the
model systems with those more complex natural systems that include other
evolutionary forces such as mutation, genetic drift, and inbreeding. By virtue of
this comparison, biologists can determine how and to what degree the actual
system under consideration deviates from the optimality models and what
constraints to take into consideration (see Orzack and Sober 1994). As Elliott
Sober writes,

Adaptationalist thinking is an indispensable research tool. The only way
to find out whether an organism is imperfectly adapted is to describe
what it would look like if it were perfectly adapted (1996[1998], 83).

There are several different ways in which ‘false models lead to truer theories’
(Wimsatt 1987). Generally, if the predicted consequences of the equations with
initial conditions are sufficiently different from the data describing the behavior
of the population or community, then the theoretical hypothesis that the model
and the phenomena exhibit a good fit is inadequate. It is then crucial to move
from the fact that they are dissimilar in this respect to localizing the error in the
hypothesis. Systematically investigating the error will force one to reject some
assumption of the model or the model completely (or the initial conditions or
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auxiliary hypotheses). It might be the case that we have left out relevant
variables that are needed to describe the dynamics of the empirical system or
we may have misdescribed the relations between the state variables in the laws
of the model. We may have ignored important parameters that drive the system
and so on. In this sense, ecologists must minimally be concerned with the
realism of their models’ assumptions and with biases in their model building
(Wimsatt 1980; Hausman 1992). In order to improve the empirical accuracy of
our models, we must determine which assumptions are at fault.

Predator–prey theory is a good example of how we can use simple models to
better understand complex systems. In fact, by examining how the simplest
model fails in accurately representing predator–prey systems, ecologists have
articulated a sophisticated repertoire of more realistic models.8 As we have seen
in the simplest Lotka–Volterra predator–prey system, we have coupled dif-
ferential equations, one describing the instantaneous rate of change in prey
abundance and the other describing the instantaneous rate of change in
predator abundance.
All classical predator–prey models are of the following form.

dV

dt
¼ growth rate of the prey population in the absense of the predatorð Þ

" capture rate of prey per predatorð ÞP;

dP

dt
¼ rate at which each predator converts captured prey into pedator birthsð Þ

" rate that predators die in absense of preyð ÞP:

In the simplest model of a predator–prey system, we assume that (a) the prey
grows exponentially in the absence of the prey (rV), (b) predator and prey
encounter one another randomly in proportion to the abundance (VP), (c) the
predators have a linear functional response (aV), (d) the numerical response of
the predator is a constant multiplied by the functional response [b(aV)], and (e)
the predator declines exponentially in the absence of the prey (qV). This gives
us the following model:

dV

dt
¼ rV" aVP;

dP

dt
¼ baVP" qP:

8The following discussion of predator–prey models comes from Roughgarden (1979, 432–451).
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At equilibrium dV/dt=dP/dt=0, and so we have

V& ¼ q

ab
;

P& ¼ r

a
:

The prey equilibrium V* is determined by properties of the predator. Likewise,
the predator equilibrium P* is determined by the properties of the prey. This
general feature is present in all classical predator–prey models.

The simplest Lotka–Volterra model exhibits mathematically interesting
dynamics. The equilibria of the model are not locally asymptotically stable, but
this model does not exhibit unstable behavior either. A numerical analysis of
the model reflects the fact that solutions to the equations are cycles, where the
amplitude of the cycle is completely determined by the initial conditions. This is
called neutral stability. So, if the system starts with a large-amplitude cycle, it
will continue in such a cycle indefinitely. The same is true of a small-amplitude
cycle as well. We can see this from Figure 1.

Ecologists consider the Lotka–Volterra predator–prey model to be unreal-
istic, since a small change in the initial conditions can lead to large changes in
the oscillations exhibited by the model. Natural predator–prey systems could
never exist if they were so vulnerable to small changes. It is by recognizing this
important empirical deficiency of the simplest Lotka–Volterra predator–prey
model that we can better understand the dynamics of these interacting popu-
lations.

Figure 1. A phase portrait of the Lotka–Volterra predator–prey model exhibiting neutral stability
(taken from Roughgarden (1979)).
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It is apparent that Alfred Lotka himself recognized this point. In his Ele-
ments of Mathematical Biology, he writes regarding the parameter a (or k in his
notation),

Regarding the function k, we shall make the very broad assumptions that
it can be expanded as power series in N1 and N2, thus k = a + b N1 + c
N2… Nonetheless, it will be convenient first of all to consider an
approximation (1956, 88–89).

That is, his assumes the functional response has an extremely simple form and
thus one has the classic Lotka–Volterra predator–prey model. He claims
(independent of observations) that when one takes into account the second and
higher degree terms, then one gets a ‘damped oscillation’ (1956, 92). Of course,
he did not show this but sends the reader to the original literature and a paper
by Henri Poincaré!9

One way of inducing stability in our Lotka–Volterra predator–prey model is
to assume that our prey does not grow at an exponential rate of (rV) in the
absence of the predator. Rather, we assume that the prey grows at a logistic
rate of dV/dt = rV(1"V/K) in the absence of the predator where K is the
carrying capacity of the prey. Thus, our revised model is

dV

dt
¼ rV 1" V

K

! "
" aVP;

dP

dt
¼ baVP" qP:

We should recognize first that at equilibrium dV/dt=dP/dt=0, the preda-
tor’s abundance is still determined by the properties of the prey and the prey’s
abundance is still determined by the properties of the predator since

V& ¼ q

ab
;

P& ¼ r

a
1" V&Kð Þ ¼ r

a
1" q

abk

# $
:

9Vito Volterra (1926) takes a different attitude towards neutral stability. First, he claims that there
are three ‘laws’ that can be deduced from the model (1926, 558–559). First, the fluctuation of the
species is periodic depending only on initial conditions. Second, the average numbers of the two
species tend to have constant values. Third, he states what we now call the ‘Volterra Principle’ –
anything that both increases predator mortality and decreases the rate of growth of prey will lead to
an increase in the prey abundance and a decrease in the predator abundance. Volterra then claims
that the third law ‘is undoubtedly the most interesting of all, because it affords the best actual
verification so far found of the theory’ (1926, 284). This is particularly interesting because con-
firmation of the Volterra Principle provides next to no confirmation of the first two laws since all of
the classical predator–prey models obey the Volterra Principle and only the simplest possesses
neutral stability.
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The only difference from the previous model is the logistic term in the prey’s
growth equation, which now includes the carrying capacity of the prey. We
thus can avoid the deficiency of the previous model by incorporating an
ignored parameter K – the carrying capacity of the prey population.

The logistic predator–prey model generates more realistic oscillatory
behavior. Applying a local stability analysis to our model, we can determine
that the equilibrium is stabilized by adding density-dependence to the prey’s
rate of growth in the absence of the predator. This is shown graphically in
Figure 2. This stable equilibrium can still be approached in an oscillatory
fashion, however, depending on the value of K. This can be seen in Figure 3.

We could also incorporate other ignored biological details like predator
satiation when the prey is abundant, If we let c represent the maximum rate
of prey capture per predator and a represent how easily a predator is sati-
ated with prey, then one functional response curve that includes satiation is
c(l " e"aV/c).10 Our new predator–prey model is

dV

dt
¼ rV 1" V

K

! "
" cð1" e"aV=cÞP;

Figure 2. A phase portrait of the predator–prey model with logistic growth of the prey in the
absence of the predator (r=0.5, a=0.01, b=0.02, and K=750). Here the carrying capacity of the
prey is very low and thus the stable equilibrium is approached without oscillations (taken from
Roughgarden (1979, 442)).

10As an anonymous reviewer notes, this is not the most common way to model functional response.
More commonly, with h as parameter measuring the handling time per prey item, a Type I func-
tional response is f(N)=cN. A Type II functional response is f(N)=cN/(1+hcN). Finally, Type III
functional response is f(N)=cN/(1+hcN2).
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dP

dt
¼ bcð1" e"aV=cÞP" aP:

This would give us stable limit cycles (Roughgarden 1979, 443–446). A stable
limit cycle occurs only if for any arbitrarily small perturbation away from the
cycle, the system will return to the cycle with the same amplitude and frequency.
We can see this from Figure 4. Thus, this behavior is neither the neutral stability
exhibited by the first model nor a stable equilibrium point exhibited by the
second model. However, the logistic predator–prey model with predator sati-
ation can exhibit a stable equilibrium point for certain values of K.11

Thus, models with biologically unrealistic assumptions and dynamics like
our simplest Lotka–Volterra predator–prey model can teach ecologists
important lessons especially when compared with more realistic models. As
Richard Boyd and Peter Richerson write,

A well understood simple sample theory serves as a useful point of
comparison for the results of more complex alternatives, even when
some conclusions are utterly ridiculous…[M]odels do not usually fail;
they fail for particular reasons that are often very informative. Just what

Figure 3. A phase portrait of the predator–prey model with logistic growth of prey in the absence
of the predator (r=0.5, a=0.01, b=0.02, d=0.1, and K=3000). Here the carrying capacity of the
prey is relatively high and the stable equilibrium is approached with oscillations (taken from
Roughgarden (1979, 442))it .

11If K<K0, then the predator–prey system has a stable equilibrium point. However, if K ‡ K0, then
the predator–prey system exhibits stable limit cycles. Technically, K0 is that value of K at which the
system bifurcates from one dynamical behavior to another – mathematically, this property is
known as a Hopf bifurcation.
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modifications are required to make the initially ridiculous results more
nearly reasonable? (1987, 41).12

We have now seen how we can systematically alter models to replace
assumptions that seem grossly implausible with ones that are more plausible
given the empirical systems we want to study. In so doing it is possible to
explore the dynamics of the models to see how models with different
assumptions behave. If we can systematically investigate the various assump-
tions of the model, then we have a fallible but justifiable way of locating error
and revising our hypotheses.

Conceptual frameworks and models

Models also provide ecologists with conceptual frameworks by which they can
pose questions and carry out experimental investigations. Often models can
provide concepts, which can be used independently of the models and can raise
important questions. These concepts may correspond to various natural kinds
or properties that are causally salient. Ultimately, the concepts outstrip the

Figure 4. A phase portrait of the predator–prey model with logistic growth of the prey in the
absence of the predator and predator saturation (r = 0.5, a = 0.01, b = 0.02, d = 0.1, K= 2500,
and c = 10). The stable limit cycle is a ‘closed orbit’ that other nearby trajectories will approach
(taken from Roughgarden (1979, 445)).

12It is important to note though that just because a model is more idealized than another does not
mean that the latter is necessarily more accurate predictively that the former. Sometimes idealizing
assumptions, which describe the main effects of a causal factor, are better than more detailed
assumptions concerning that factor. Ironically, the idealizations do less to distort the models as a
whole. Thanks to Nancy Cartwright on this point.
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application of the model and have lives that are independent of their mathe-
matical counterparts and directly contribute to experimental research (Cooper
1993). A case in point concerns debates over the ‘balance of nature’ and the
relationship between the complexity and stability of communities.

May (1973) was one of the first ecologists to explore the connections between
complexity and stability within the mathematical framework of dynamical
systems – in particular with what are known as ‘local stability analyzes.’13 May
assumes that we have m species described by the following nonlinear first-order
differential equations:

dNiðtÞ=dt ¼ FiðN1ðtÞ;N2ðtÞ; . . . ;NmðtÞÞ:

The equilibrium for a species i, denoted as Ni
*, occurs when the number of

individuals in the species does not change. Mathematically, this is occurs when
dNi(t)/dt=0 and we can find this equilibrium by ‘solving’ the relevant equa-
tions.14 May was interested in what would happen to the community equilib-
rium when perturbed in a relatively small way. Would the community return to
its pre-perturbation equilibrium? To answer this question, we need an
expression summing those equilibria and the perturbations. So, we write,

NiðtÞ ¼ N&i þ xiðtÞ;

where xi(t) refers to arbitrarily small changes to the equilibrium Ni
*. In effect,

we are taking the equilibrium for each species and perturbing it by the amount
xi(t). Rearranging, we have an equation for the perturbations themselves – it is
the new density after the perturbation minus the previous equilibrium.

xiðtÞ ¼ NiðtÞ "N&i :

From a mathematical point of view, things can get exceedingly complex when
we try to discover what will happen to the perturbed equilibrium of the
community. However, if we assume those perturbations are small and do not
take us very far from the community equilibrium, then we can provide a linear
approximation of the function that describes what happens to xi(t) through
time. Using these techniques and his assumptions about differential equations
the community obeys, May arrived at a set of m linear first-order differential
equations describing the dynamics of the perturbation itself.

13Ecologist Levins (1985) recognized that community interactions could be described by what he
called a ‘community matrix.’ One should also see Gardner and Ash by (1970) for a more general
exploration of complexity and stability in complex systems.
14Ecologists are not interested in just any equilibrium – they are particularly interested in feasible
equilibria where an equilibrium is feasible if dNi(t)/dt=0 and Ni

*>0 for all i. In other words, a
feasible equilibrium for a community occurs when the rate of growth of each species is not changing
and all the species are present in the community. If there are no individuals of a given species in a
community, then trivially the rate of change is zero.
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dxiðtÞ
dt
¼
Xm

j¼1
aijxjðtÞ

The parameter aij is the interaction coefficient between species i and j, which
represents the effect of the species j on species i. So if i is a predator and j is
prey, then aij>0 and aij<0. Similarly, if i and j are competitors, then aij<0 and
aij<0. If i and j are mutualists, then aij>0 and aij>0, and so on. It is also
possible that for some species i and j, aij=0. Interestingly, we can describe the
possible interactions among species by the signs of aij and this is commonly
done in ecology textbooks. We can also represent this last equation much more
concisely with matrix algebra

dx

dt
¼ AxðtÞ

where x is the m· 1 column vector of xi and A is the m· m ‘community matrix’
or whose elements aij describe the effect of species j on species i near equilib-
rium N *.15 In effect, x is a ‘list’ of the perturbations and A describes how each
species affects each other. Matrix algebra allows us to represent and analyze
this large set of equations and it properties in an extremely economical fashion.
Moreover, it provides us with a concise statement of when an equilibrium will
stable or unstable. An equilibrium point is locally stable just in case all of the
eigenvalues of the community matrix A have negative real parts; otherwise, it is
unstable. Eigenvalues are special solutions of matrices and as such have no
easy explanation – sometimes they involve complex numbers making them
even harder to grasp (and thus we talk of eigenvalues having real and imagi-
nary ‘parts’). Nonetheless, the fundamental point of the analysis above is this:
If the community equilibrium we started with is unstable, then the difference
between Ni(t) and Ni

*(t) grows with time; if the equilibrium is stable, then the
difference shrinks with time and we return to that state.

May modeled his communities with m species and chose the interaction
coefficients aij at random with one sort of exception. He assumed that for each
species there was density-dependence or intraspecific competition and hence
the diagonal elements of the community matrix – those entries aij where i = j
were negative.16 Ignoring then the diagonal elements of the matrix, some
species interaction coefficients were greater than zero, some less than zero, and
some were equal to zero. He defined the connectance C of a community to be
the proportion of interspecific interactions not equal to zero – aij „ 0. Finally,
the intensity s of the interspecific interaction was a random variable with a
mean of zero and a variance of s2.

15Technically, aij=(¶Fi/¶Nj)
*.

16The diagonal elements of a n· n matrix are a11,a22,…,amm. These reflect the effect of species i on
itself. By assuming that these terms are negative we are assuming individuals of the same species
compete.
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May proved that a model community is ‘almost certainly’ stable if, and only
if,

sðmCÞ1=2 < 1

Therefore, all else being equal, an increase in the number of species m, con-
nectance C, or interaction strength s will lead to a decrease in the stability of a
community. This result was truly astonishing. For example, if we hold con-
nectance and intensity of the interactions constant and increase S, then the
community will become unstable. This was contrary to what ecologists such as
Charles Elton and Robert MacArthur at least appeared to have hypothesized.
Moreover, it seemed to fly in the face of conservationist folk wisdom. As Barry
Commoner wrote in his 1972 book The Closing Circle,

The amount of stress which an ecosystem can absorb before it is driven to
collapse is also a result of its various interconnections and their relative
speeds of response. Themore complex the ecosystem, themore successfully
it can resist a stress... Like anet, inwhich eachknot is connected toothers by
several strands, such a fabric can resist collapse better than a simple, un-
branched circle of threads – which if cut anywhere breaks down as a whole.

As with most models, ‘May’s theorem’ has been criticized especially with re-
spect to the various simplifications that hismodel employs. For example,Donald
DeAngelis (1975) argued thatMay’smodels were biologically unrealistic and one
such reason concerned donor-dependence. If a species j is eaten by a species i, then
donor-dependence occurs if ¶Fij/¶Nj>¶Fij/¶Ni – in other words, the predator’s
dynamics are determined more by changes in the prey’s density than in the
predator’s density. DeAngelis noted that donor-dependence can generate stable
communities when coupled with other more realistic assumptions. Larry Lawlor
noted that randomly constructed communities will contain prey-less predators
and predator-less prey, which is biologically unrealistic. Moreover, randomly
constructed food webs contain loops where species i feeds on species j, j feeds on
species k, and k feeds on i, which is also biologically unrealistic (Lawlor 1978).17

Note also that there is a sharp transition from stability to instability as described
by (4) and that this does not does hold for more realistic models.18

17Though some biologists debate this point. One might wonder why Lawlor would criticize May’s
model if he did not believe it was predictive. Here is what Lawlor writes, ‘If May’s conclusions are
to be relevant to the complexity-stability question in ecological systems, his randomly constructed
matrices must, of course, be representative of real ecosystems’ (1978, 445). He claims that May’s
randomly constructed matrices are not representative and hence irrelevant to the central question.
Lawlor argues that May has placed so few constraints on the biological reasonable models, that a
random search for a stable, biologically reasonable models would be a ‘transcomputational
problem’ (1978, 445). Thus, he tries to provide constraints so that a random sample will be
representative of actual ecosystems and can overcome the computational problems. For a dis-
cussion of the idealizations in May’s models, see Pimm (1984, 67–73).
18For similar results with different models, see DeAngelis (1975), Gilpin (1975) and Pimm(1979).
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Stuart Pimm (1979) investigated larger perturbations than the arbitrarily
small ones of May’s analysis on the grounds that the arbitrarily small ones of a
local stability analysis are quite unlike those perturbations found in nature.
Pimm modeled the perturbations as the deletion of single species from the
community. A community is species deletion stable if, and only if, following the
removal of a species from the community all of the remaining species are
maintained at a new locally stable equilibrium (1982, 47). Pimm found that if
only a basal species is deleted, the community’s species deletion stability does
not decrease with increasing interacting pairs of predators and prey. However,
he did find that generally the number of interactions decreases the community’s
species deletion stability (1979, 355).

After this work by theoretical ecologists, Pimm recognized that one could
articulate a variety of stability concepts (1984, 1991).19 Pimm, of course, was
not the first to do so; C. S. Hollings and Gordon Orions had recognized this as
well. Moreover, they all understood that with different stability concepts, one
would have different hypotheses. Nonetheless, Pimm distinguished between
definitions of complexity, stability, and the variables of interest. The complexity
of a community can be defined in terms of species richness, connectance,
interaction strength, or evenness. Species richness is the number of species in a
community. Connectance is the number of interspecific interactions divided by
those possible. Interaction strength is the mean magnitude of interspecific
interaction; i.e., the size of the effect of one species’ density on the growth rate
of another species. Species evenness is the variance of the species abundance
distribution. The variables of interest are individual species abundances,
species taxonomic composition, and trophic level abundance.

The ‘stability’ of a community is thus characterized in one of the following
ways (see 1984, 322):20

1. Stable: a system is stable just in case all the variables return to their initial
equilibrium values following a perturbation.

2. Resilience: how fast the variables return to their equilibrium following a
perturbation.

3. Persistence: how long the value of a variable lasts before it changes to a
new value.

19Mikkelson has argued that the stability concepts of May and Pimm create an ‘a priori bias’
against the diversity-stability hypothesis (1997, 483). The ‘neighborhood stability’ of a community
concerns the probability that all the species must return to their pre-perturbation equilibrium
abundances. Likewise, the species-deletion stability is the probability that all species avoid
extinctions and hence persist after the perturbation. However, these criteria get increasingly strict as
the number of species in a community grows. Hence, the stability concepts that May and Pim
employ turn an empirical issue into ‘an artifact of probability theory’ (1997, 486). But, if a defi-
nition turns an empirical issue into a ‘generic a priori exercise,’ then we should reject such a
definition. Mikkelson argues that other stability concepts do not have this feature.
20Orian’s (1975) list of concepts consisted in trajectory stability, elasticity, inertia, and amplitude
(1975, 141–2) which is very similar to Pimm’s.
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4. Resistance: the degree to which a variable is changed following a per-
turbation.

5. Variability: the degree to which a variable varies over time.

Thus, the options for formulating a complexity-stability hypothesis have the
three dimensions of complexity, stability, and variables of interest. There are
four definitions of complexity, five of stability, and three variables of interest.
This leads to a extremely large number of contending complexity-stability
hypotheses.

There are several important methodological points to note from this dis-
cussion of the complexity-stability debate. First, whatever one thinks of the
work of May and Pimm – and many empirical ecologists have been skeptical –
there has been a plethora of stability concepts that have arisen from the model
building of the likes of May and Pimm among others. If this work had not been
done, then the various hypothesis relating complexity and stability would not
and could not have been imagined. As theoretical ecologist Hal Caswell (1988)
argues,

None of these distinctions were, or could have been, drawn by Elton.
Their importance became apparent only as the original verbal theory was
studied using mathematical models, (1988, 35)

Thus, the models even if highly idealized and difficult to test, provided a
conceptual framework for ecologist to study communities in the field and the
lab. Otherwise, the concept, or better yet concepts, of ecological stability would
have remained extremely vague.

Second, as these different hypotheses have been articulated with their asso-
ciated stability concepts, ecologists have explored these hypotheses with
experiments. Sharon Lawler (1993) studied protozoans in a laboratory ‘bottle
experiment’ to see if more complex food webs were more or less stable than
simpler webs.21 Protist webs consisted in two, four, or eight species with each
web replicated five times. The predator–prey pairs antecedently known to be
stable were Steina and Uronema (S), Blepharisma and Colpidium (B), Euplotes
and Chilomonas (E), and Urostyla and Askenasia (U). Thus, all the possible
four species combinations of predator–prey pairs were (SB), (SE), (SU), (BE),
(BU), (EU). Finally, the eight species combination is (SBEU). Only 1 of 40
populations (2.5%) went extinct in the two species-webs, whereas 26 out of 120
populations (21.7%) went extinct in the four-species webs, and 11 out of 40
populations (27.5%) went extinct in the eight species webs. Lawler drew the
conclusion that more complex food webs produce more frequent extinctions in
simple laboratory communities. This result is clearly in qualitative agreement
with ‘May’s theorem’.

21These microcosms are literally bottle experiments – each community existed in a 240 m glass jar
of well water containing 100 ml of Carolina Biological protozoan pellets.
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It is interesting to note that the work both theoretical and experimental that
was suggested by his analyzes of complexity and stability was exactly what he
hoped would be accomplished through his models. He writes,

This work seeks to gain general ecological insights with the help of
general mathematical models. That is to say, the models aim not at
realism in detail, but rather at providing mathematical metaphors for
broad classes of phenomena. Such models can be useful in suggesting in
interesting experiments or data collecting enterprises, or just in sharp-
ening discussion (1973, v).

Models perform a variety of functions in theoretical ecology. They are used
to explore possibilities, investigate complex systems, and provide conceptual
frameworks. One of the functions that I have not described is in generating
accurate predictions. In many cases, ecological models do provide accurate
predictions. However, in evaluating the success and importance of models in
ecology we must attend primarily to how they are used. That is, we must
recognize the functions they are designed to perform by ecologists. Insofar as
models accomplish those functions, we can count those models as successful.
Models that are inaccurate can still lead to significant truths; it is just that the
models themselves do not have to be true or accurate representations for some
of the purposes to which they are put.

Simberloff’s worry

I now want to return to Daniel Simberloff’s worry expressed above since it is
especially relevant to the pragmatic approach developed here.

Ecology is awash in all manner of untested (and often untestable) models,
most claiming to be heuristic, many simple elaborations of earlier un-
tested models. Entire journals are devoted to such work, and are as
remote from biological reality as are faith-healers.

I take his concern to be the following: if models are to be of use – even as
heuristics – they must ultimately answer to data. However, many models are
built which have not been tested and they themselves are built from models
that have not been tested either. Hence, these models are not being tested and
thus are of little or no use.

Let us suppose that we have a family of related ecological models all deriving
from some initial model. We start with a basic model from which all the others
are generated and this model forms the basis of a structural framework, which
other models descend from by virtue of having different assumptions along
with some that are shared. The initial model might be our Lotka–Volterra
predator–prey model and the other models might be our predator–prey model
with a logistic term, or a predator–prey model with a logistic term and a
predator satiation term, and so on. To devise a model that answers to empirical
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phenomena, we often must devise models tailored to specific systems and this
often takes quite a bit of time. Our earliest models in the family will be more
idealized and will be most difficult to test predictively. Thus, the aim by which
they are judged will not be predictive accuracy and it will then be inappropriate
to judge them against an aim they were never designed nor intended to fulfill.
Hence, if Simberloff’s criticism is that all models in such a family should be
evaluated by their predictive accuracy, then this is extremely unreasonable, On
the other hand, if his criticism is that some models in such a family should be
tested predictively, then this is correct and consistent with what I have claimed
in this essay. In either case, Simberloff’s criticism can be defused.22

Nonetheless, one of the fundamental aims of science, and maybe the most
fundamental, is empirical accuracy. Simberloff is exactly right – we do want
models to ‘save the phenomena’. As Robert Brandon has argued, population
biology is both ‘theory-rich’ and ‘data-poor’ but also ‘data-rich’ and ‘theory-
poor’ (1993). In many cases, we do not have the right sort of theory for the
data we possess and vice-versa. What this speaks to is not the bankruptcy of
theory but rather that we do not have the proper interaction between theory,
experiment, and data (Karieva 1989). As E. C. Pielou writes concerning models
of limiting similarity,

They demonstrate, also, the difficulty of linking theoretical arguments to
real-life situations. The existence of difficulties in not, of course, a
deterrent; work should continue until they are overcome, (1974, 354)

Modelers and empiricists must be conversant with each other’s work. To
abandon theory is no solution. In fact, I would also suggest that model
building is inescapable. Ecologists use mathematical models in order to develop
general claims concerning various functional kinds even when those general-
izations are not laws. Likewise, models, or concepts developed from them, can
direct ecologists to crucial questions. Without our models, many questions
might not have even been asked nor answered.

Lastly, I would suggest that conservation biology cannot be carried out
without theoretical models. For example, one recent trend in applied ecology is
population viability analysis (Soule 1985). Here ecologists use models in order
to project the expected time to extinction of various species with respect to
specific periods of time and population sizes. PVAs require computer simula-
tions based on simple population growth equations, Leslie projection matrices,
and models of demographic and environmental stochasticity. Unfortunately,
we simply lack the relevant data since these populations are so small and this
induces massive sampling error. Moreover, if one experiments on an at risk
population, then this can lead to its extinction. Hence, these analyzes must be

22Of course, Simberloff might claim that the proportion of tested models to the total number of
models in a family is less than optimal. This claim would raise very perplexing issues. What is this
‘optimum’? How does one determine it?

252



carried out with models even if they are not especially accurate. Thus, model
building is an essential part of theoretical ecology, and even applied ecology.

Conclusion

The strategy of model building is important in the development of population
and community ecology. Models are used for a variety of purposes such as
exploring possibilities, investigating complex systems, providing conceptual
frameworks, and generating accurate predictions. However, models must be
evaluated according to their functional roles not against jobs that they are not
designed to carry out. As Richard Levins writes,

Modelers always must keep in mind that the utility of their construct
depends on the particular purpose for which it was built. There is no such
thing as the true model of a system but only more or less adequate rep-
resentations of the system. (1985,8)
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