
Abstract This paper is an interpretation and defense of Richard Levins’ ‘‘The
Strategy of Model Building in Population Biology,’’ which has been extremely
influential among biologists since its publication 40 years ago. In this article, Levins
confronted some of the deepest philosophical issues surrounding modeling and
theory construction. By way of interpretation, I discuss each of Levins’ major
philosophical themes: the problem of complexity, the brute-force approach, the
existence and consequence of tradeoffs, and robustness analysis. I argue that Levins’
article is concerned, at its core, with justifying the use of multiple, idealized models
in population biology.
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Richard Levins’ article ‘‘The Strategy of Model Building in Population Biology’’ is
one of the most influential philosophical discussions about theory construction. It is
frequently cited by population biologists and while less known among philosophers
of science, it was included in the first edition of Elliott Sober’s widely used philos-
ophy of biology anthology (Sober 1984).

Levins’ article contains enormous insight into some of the deepest philosophical
issues surrounding modeling and theory construction. His focus on the practice of
modeling, rather than on the outcome of mature theorizing, revealed important as-
pects of the enterprise that had not previously been appreciated. For example, he
called attention to the tradeoffs one faces when constructing and analyzing models. He
also thoughtfully discussed different strategies for constructing models, the complex
ways that one gathers confirming evidence for these models, and the pitfalls associated
with aiming for complete representations at the expense of all other considerations.
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Despite the importance of Levins’ article, it has received very little critical
attention by philosophers of science. Notable exceptions include articles by William
Wimsatt (1981, 1987) and a joint article by Orzack and Sober (1993). Within the last
few years, several discussions of Levins’ article and related methodological discus-
sions have started to appear (Odenbaugh 2003; Weisberg 2004, 2006) and a
conference has been devoted to ‘‘The Strategy of Model Building’’ and Levins’
methodological work, from which many of the papers in this issue of Biology and
Philosophy are drawn.

This paper is an interpretation and defense of ‘‘The Strategy of Model Building.’’
I will discuss each of the major themes of the paper: the challenge of complexity, the
brute-force approach, the strategies of modeling, and robustness analysis. I will also
argue that Levins’ article is concerned, at its core, with the justification of ideali-
zation in population biology. The methods developed in this paper can be used to
develop a more comprehensive theory of its justification.

Model building and its goals

Levins’ article is about model building, which despite its obvious importance in
theoretical practice, is rarely discussed in its own right by philosophers. The litera-
ture about models has tended to focus on the structure of models, the autonomy of
models from theories (e.g., Morgan and Morrison 1999), and the ways that theories
can be reconstructed as clusters of models (e.g., Suppes 1960a, b; Suppe 1977). These
issues are all relevant to understanding the significance of Levins’ position, but do
not concern the primary locus of his discussion: the practice of constructing and
analyzing models, or what Levins calls model building.

Model building or modeling is the indirect representation and analysis of a real-
world phenomenon using a model. It takes place in three stages: In the first, a
theorist constructs a model, typically by writing down a mathematical description of
this model. In the second, she analyzes the model, looking for characteristic
behaviors such as equilibria, oscillations, regions of stability, etc. Finally, if war-
ranted by the problem of interest,1 the modeler assess the relationship between the
model and real-world phenomena. This relationship is assessed using the modeler’s
construal, a set of intentions about how the parts of the model should map on to the
phenomenon of interest as well as the standards of fidelity that will be used in
evaluating the success of the model’s representation. If the model successfully rep-
resents a real world phenomenon, then the representation and analysis of the model
is, indirectly, a representation and analysis of a real world phenomenon (Weisberg
2007).

Modeling has a venerable history in population biology. Its origin is often traced
to the independent, but convergent work of Vito Volterra and Alfred Lotka on
predator-prey oscillations. Volterra’s work on predation began as a response to
unusual data from the Adriatic fisheries. This data remained mysterious until he
constructed a very simple mathematical model of a single population of predators

1 I put this point carefully because some models are studied for their intrinsic interest, with no
expectation that a real-world phenomenon corresponds to them. Analyses of perpetual motion
machine models, three-sex biology models, and models of non-aromatic cyclohexatriene are
examples of such a situation.
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and a single population of prey. After performing a detailed analysis of this model,
which apparently replicated the unusual behavior observed in the Adriatic, Voterra
argued that the model could approximately replicate the population dynamics of the
Adriatic fisheries (Volterra 1926). This, along with early work on mathematical
population genetics, introduced modeling as a distinct kind of theorizing in popu-
lation biology. Today, much of biological theorizing involves modeling.

The value of different types of theory construction is a complex and not partic-
ularly well-understood aspect of scientific method. Levins, however, offers us three
reasons why we should engage in modeling: understanding, predicting, and modi-
fying nature. He calls these the goals of modeling (Levins 1966, p. 19).

A model which is constructed to explain some phenomenon is one that meets the
goal of understanding. Similarly, the goal of predicting is met by a model which can
make accurate predictions. Modifying nature is a more complex goal because there
is no one particular theoretical virtue associated with intervening or modifying
nature. In fact, one might think that modifying nature requires both the ability to
explain and the ability to predict. So perhaps there are really two goals of modeling
or else modifying nature is a goal that requires theoretical desiderata beyond
explanatory and predictive power.

Levins’ discussion of the three goals of modeling might seem rather commonplace
from the point of view of philosophy of science. After all, it is often said that science
is about explanation, prediction, and control, and Levins’ three goals seem to cor-
respond almost exactly to that maxim. But their simplicity and parallels to standard
conceptions in philosophy of science are deceiving. Although Levins initially leaves
open the possibility that a single model could achieve these goals, his later discussion
emphasizes that the value of these goals are distinct and achieving one of the goals in
the maximum degree might be incompatible with achieving another.

Complexity and the brute force approach

In my view, the real core of ‘‘The Strategy’’ begins with Levins’ discussion of
complexity. He reminds us that even relatively simple populations, if represented in
complete detail, would require dealing simultaneously with ‘‘genetic, physiological,
and age heterogeneity within species of multi-species systems that are changing
demographically and evolving under fluctuating influences from the environment’’
(Levins 1966, p. 18). In other words, even the internal dynamics of a population,
completely isolated from external environments, contain an enormous amount of
structure to be modeled. Since real populations are exposed to environments, this
leads to further dynamics in the population including natural selection. In addition,
external environments change and are changed by the population over time. Trying
to capture all of these factors for a very simple population may be impossible.

When confronted with this much complexity, we have two main options in how
we approach theoretical representation. We can adopt what Levins calls the brute-
force approach, or we can adopt an idealization approach. Either we aim at building
as much of the target system’s complexity into our models as we possibly can, or we
choose to make strategic idealizations, omitting select aspects of the complexity.
Much of Levins’ discussion in ‘‘The Strategy’’ and his subsequent philosophical
discussions (Levins 1968, 1993; Levins and Lewontin 1985) analyzes the advantages
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and disadvantages of the idealization approach. Such an analysis most naturally
takes place in contrast to the advantages and disadvantages of the brute-force
approach.

The brute-force approach

Levins describes the brute-force approach as one where we build mathematical
models which are ‘‘faithful, one-to-one reflection[s] of this complexity.’’ One could
read this in two ways: Is Levins referring to actually constructing models which are
one-to-one reflections of the complexity or to the goal of building such models?
I think that the most natural way to read this passage is as referring to the goal, not
the achievement, of complete representation. Elsewhere, I have called the goals
and ideals associated with modeling representational ideals and named the ideal
associated with the brute-force approach COMPLETENESS (Weisberg ms-a).

When a modeler adopts COMPLETENESS, she sets her standards of fidelity such that
the best model is the one which is a complete representation. Each aspect of the
target phenomenon must be mappable onto an aspect of the model. Anything
external to the phenomenon that gives rise to its properties must also be included in
the representation. Structural and causal connections within the target phenomenon
must be reflected in the structure of the representation. Finally, according to COM-

PLETENESS, the best representation is one which represents all aspects of the target
phenomenon with an arbitrarily high degree of precision and accuracy.

Completeness is rarely, if ever achieved, by a model, especially when one is
dealing with complex systems. Thus adopting the brute-force approach does not
mean that scientists are literally trying to find models that achieve complete rep-
resentation. Nevertheless, adopting the brute-force approach and its ideal of COM-

PLETENESS plays two roles in theoretical inquiry. Firstly, it sets up a linear scale along
which we can measure the goodness of any model for a given system both in terms of
its predictive power and also the causal structure represented by the model. The
closer the model comes to complete representation, the better the model is. The
second function of the ideal is to set up a target that theorists aim at, but do not
literally strive to achieve. As they come closer to the target, theorists can conclude
that their models are more successful representations of real-world systems. How-
ever, they needn’t think that they will ever actually achieve this ideal of complete
representation. This kind of ideal is very similar to what Kant calls a regulative ideal.
It is an ideal which guides inquiry and sets a target to aim at, but the target is known
to be impossible to achieve in its entirety.

Levins probably had systems ecology in mind when discussing the brute-force
approach. Systems ecologists aim to capture as much of the detailed interaction of
complex ecosystems as is possible and take it as their continuing mission to include
ever more of the world’s complexity in their models. Even when pointing to the
great difficulty in achieving a complete representation, they make clear how sig-
nificant their goals actually are.

Simulation models of ecosystems need not be all inclusive but they must be all
encompassing, i.e., they must cover all the kinds of interactions present in the
system without including all the interactions (Wiegert 1975, p. 314).
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Systems models thus rely on the most detailed descriptions of ecological systems that
are currently available. As these models are always computer-based, very little
attention is paid to simplicity, generality, ease of computation, and the like, except
insofar as this impacts computational tractability (Odum 1983; Watt 1956). The
models are often designed in a modular way, which allow different teams of
researchers to contribute different parts of the model. Since they are extremely
detailed representations of particular ecosystems, these models are often used to
forecast changes in environments or the effect that biotic and abiotic interventions
would have on the environment.

In some ways, the brute-force approach is the natural extension of standard,
realist accounts of scientific method and theory confirmation. Confirmation theory
tries to account for how evidence bears on the truth or falsity of a theory. As such,
philosophers developing these accounts assume that theorists are trying to give
complete and accurate representations of the phenomena under consideration.
Approximations may be necessary for pragmatic reasons, but this is simply a less-
then-desirable state of affairs, something to be eliminated as science progresses. It
is certainly not thought to be a conscious choice in theory construction. Levins
believes that this perspective is mistaken and is highly critical of the brute-force
approach’s application to complex systems. He gives three reasons to be critical of
this approach.

Problems of measurement

Practical and fundamental limitations on measurement comprise Levins’ first
critique of the brute-force approach. He writes that brute-force models ‘‘[have] too
many parameters to measure; some are still only vaguely defined; many would
require a lifetime each for their measurement.’’ (Levins 1966, p. 18) Put differently, a
major impediment to brute-force modeling is the limitation of our ability to acquire
the relevant data for such a model.

This may not be a fully satisfying condemnation of brute-force modeling because
it relies on highly contingent facts. However, if it could be shown that making the
measurements necessary to build brute-force models was always going to be
impossible, this argument would give us an in principle reason why the brute-force
approach was inadvisable.

In some situations, I think Levins is right that the difficulty of collecting data can
undermine the brute-force approach. Consider a phenomenon that behaves in a
simple way when looked at in large scale, but that exhibits fluctuations at micro-
scales such as the ocean. For example, say we wanted to build a highly accurate
model of the costal waters of California using the brute-force approach. Even though
there may be large-scale trends in this systems, there will be an enormous number of
micro-fluctuations on small scales. In order to capture all of the relevant detail, we
would need to lay down many instrument buoys to record information about water
temperature, speed, direction, salinity, etc.

How many buoys should we or can we lay down? In an extremely precise study,
maybe they would be spaced apart in one kilometer increments. But let’s be unre-
alistic, say we spaced them one meter apart from one another. Even if we expended
enormous resources to get down to this scale, there still would be many fluctuations
at even smaller scales that we would not be able to capture. If the instruments are
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spaced apart in meter increments, we are still 10 orders of magnitude from the
molecular level, where many of these micro-fluctuations are observed. Even worse,
putting the measuring devices this close together might have significant effects on
the system we were trying to measure. Instruments spaced so closely together would
almost certainly affect the flow rate of the water, the local populations of fish, and
even possibly the temperature of the water.2

In such a case, even coming close to constructing a brute-force model may be far
beyond our ability to carry out. For a relatively large phenomenon, such as the
currents in the California costal waters, a lifetime of work and trillions of dollars
would not be enough to alleviate this problem. If you want to look at a large system
in microscopic detail, it will be nearly impossible to measure the state of every
microscopic component for even a short amount of time. And I only say ‘‘nearly
impossible’’ because although far more than merely ‘‘practically impossible,’’ it isn’t
strictly physically impossible.

Levins, of course, has examples from population biology in mind, where the
relevant phenomena are macroscopic populations of organisms and the environ-
ments in which these organisms are living. He tells us that a brute-force approach to
these systems would require measuring hundreds of parameters. Since these
parameters will be things like temperature, life-span, availability of food, etc., there
won’t be as great a measurement problem as in the oceanographic case. However,
as any detailed recounting of field studies clearly suggests, field measurement are
difficult, tedious, and time consuming. Although in these cases the brute-force
approach is in better shape than the oceanography case, gathering the requisite
measurements is far from easy and may be outside the realm of possibility even with
the largest imaginable group of eager graduate students.

The considerations I have raised so far in connection with Levins’ first criticism
suggest that it will be impossible to carry out brute-force model building to com-
pletion. However, none of the considerations I have raised suggest we couldn’t get
started on such a program. As I have already explained, building the perfect brute-
force model is not a goal any theorist really believes that she can achieve. So the
important question for us to ask is whether these considerations undermine the ideal
of brute-force modeling.

There is not a single answer to this question because it needs to be evaluated with
respect to the three different goals of model building, but let’s focus on just one of
these: building models in order to make accurate predictions. For some kinds of
target phenomena, this criticism does not undermine the brute-force approach to
constructing predictive models. In particular, the brute-force approach can avoid
such measurement problems as long as the following are true: (1) The causal forces
giving rise to the phenomenon being modeled can be sorted into primary and sec-
ondary causes, the primary ones being responsible for most of the behavior; and (2)
The same causal forces are acting on all of the parts of the system. If these facts are
true of the system being modeled, then the brute-force program can avoid the
measurement problems raised by Levins. This is a fairly trivial result because these
conditions ensure that measurement will be straightforward. Statistical samples of
such a system will reflect the behavior of the whole system.

2 For further discussion about this issue and the strategies of abstraction employed to deal with it,
see Richard Levins’ contribution to this volume.

628 Biol Philos (2006) 21:623–645

123



Once we move into the realm of systems where these two conditions are not met,
the situation become more complicated. Let’s separate those cases where taking
measurements actually interferes with the phenomenon we are trying to measure
and those cases where it does not. In the first kind of case, the brute-force approach
is a self-defeating ideal and hence clearly not a good one. If in order to construct a
model, we have to collect data in ways that destroy the very phenomenon we are
trying to model, we obviously need to adopt a different strategy.

The much harder type of case is when measurements won’t actually interfere with
the target system, but Levins’ first criticism still obtains. In such a case, it will be
practically impossible to carry out the measurements required for a complete rep-
resentation of the target system or even to come close to carrying it out. Clearly the
achievement of complete representation is not a serious possibility in this case. So if
the brute-force approach is justifiable, it must be justified on grounds other than the
eventual achievement of a complete representation. One way to justify the brute-
force approach is if it leads to an active research program, one that will have many
useful results at intermediate stages of research. If the approach does have this
desirable consequence, then it is a reasonable ideal to have. However, when the
brute-force strategy doesn’t generate useful results at intermediate stages, it is no
longer a strategically sound way to proceed. This determination must be made in
particular circumstances; no global verdict is possible.

Analytical solutions

We now move from an experimental problem with the brute-force approach to the
more theoretical ones. The second problem Levins raises points to the difficulty or
impossibility involved in solving the equations which describe complex systems.
Levins writes, ‘‘The equations are insoluble analytically and exceed the capacities of
even good computers’’ (Levins 1966, p. 19). Although this statement of the problem
is very succinct, there are actually two aspects of the problem that Levins has picked
out. The first aspect of the problem is that models of complex phenomena are not
solvable analytically. The second part of the problem is that the complex equations
which describe complicated models are often not solvable numerically by computers.
This second aspect of the problem is far less significant now then it was in the 1960s
when Levins wrote ‘‘The Strategy.’’ Some kinds of brute-force modeling such as
long-term weather forecasting still exceeds our computational capacities, but this is a
problem that changes with the availability of fast, relatively inexpensive computers.

An analytic solution to a mathematical problem is one ‘‘that can be written in
‘closed form’ in terms of known functions, constants, etc. ...’’ (Weisstein 2003, p. 73).
In most of the modeling contexts that we are concerned with, the term ‘‘analytical
solution’’ refers to a function which is the solution of a set of differential equations
which constitute the description of a model. Let us grant Levins the claim that many
or most complete models of complex phenomena will be described by equations
which are not solvable analytically. How does this pose a problem for the brute-force
approach and for which uses of models is this problem most acute?

The lack of analytic solutions does not seem like a problem when we want to use
models to make predictions. Say we want to build a very complicated model of ocean
currents off the coast of California. If we can perform the relevant calculations, it
doesn’t matter whether they are carried out using extremely complex numerical
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techniques that require several days of computer time or if we can solve the equa-
tions analytically. Of course, it would be more convenient to solve the equations
analytically in that the computational effort we need to expend would be diminished.
However, if our numerical techniques are sound, we wouldn’t get a much better
prediction by analytical means.

Constructing models for explanatory purposes is different. Theorists often claim
that there is a real advantage to solving equations analytically and hence finding
models that allow for an analytical treatment. The advantage is that when one has an
analytical solution to an equation, one has an explicit description of how the parts of
the model depend on one another and the magnitude of these dependencies. Seeing
that fur thickness is inversely proportional to basal core body temperature for dif-
ferent populations of the same species tells you far more about how a system is
working than the numerical or graphical data that numerical analysis gives you. When
you want to show how and why a system behaves in the way that it does and the system
admits of mathematical representation, analytical solutions can show these depen-
dencies explicitly.3 Hence they are held to be the gold standard by many theorists.

Analytical solutions also have another kind of explanatory virtue. They help us
evaluate how general a family of models is. If we simply have numerical solutions to
the equations which describe a family of models, then it is very difficult to know how
many phenomena can be described by this family. A single numerical solution will
not give us a complete characterization of the model because we will have only
calculated what will happen with very specific boundary conditions. Many numerical
solutions could potentially characterize a single model in its entirety. But if we want
to know about the generality of a family of models represented by the same equa-
tion, numerical solutions are usually thought not to give us this information.

Although these issues suggest important, non-pragmatic reasons to prefer ana-
lytical solutions, I think Levins may be overstating the importance of such solutions.
What is important is not the analytical solution per se, but rather having a complete
characterization of the dynamics of a model or set of models. Analytical solutions to
the equations describing a model will give us an exact characterizations of the entire
family of models that this equation could potentially describe. However, some sys-
tems of equations can be analyzed using techniques such as local stability analysis.
This can give us a relatively full picture of the regions of attraction and repulsion,
which points are stable, surfaces of neutral stability, etc. Such an analysis will also
allow us to generalize from a single instantiation of a model description to the entire
family of models that can be described with the same uninstantiated description.4

Of course, some models generated using the brute-force approach will not admit
of this kind of analysis; they will be simply too complex for such a complete char-
acterization. So determining the magnitude of this problem would really involve the
hard work of looking, model-by-model, to see if there is any pattern in what kinds of
models generate mathematically tractable state spaces that can be analyzed and the
ones that do not. Insofar as their state spaces can be fully characterized, even

3 I thank Glen Ierley for pointing out why many theorists see this as the main advantage of analytical
solutions.
4 In conversation, Grigori Mints suggested that such a full analysis gives you essentially everything
you would want from an analytical solution. Thus it is not entirely clear that such a full character-
ization isn’t some form of an analytical solution, although not an algebraic solution expressed in
closed form.
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without analytical solutions to the equations, we can see how general these models
are. If they cannot be analyzed, then Levins’ second critique of using brute force
models for explanatory purposes stands.

Given the difficulties in using brute-force type models for explanatory purposes,
let us now consider whether or not the lack of analytic solutions interferes with
adopting the representational ideal of COMPLETENESS. Similar to Levins’ first criticism
of the brute-force approach, there is no single answer to this question; it depends on
the kind of phenomenon one is trying to characterize. Take a simple physical system
that admits of no analytical solution, such as a three mass system with gravitational
attraction between the masses. Although this type of system will admit of no analytic
solution in closed form, this model is described by a system of equations that can be
analyzed in great detail. We can produce a relatively complete analysis of the state
space associated with this system and hence know what kind of behaviors to expect
from this and related models. So the lack of analytic solutions does not pose a
problem for this and related physical systems, but how about biological ones?

One is tempted to say that this must also be true of many biological systems. The
dynamics of two-locus models, for example, cannot be evaluated analytically, but the
state space associated with these models can be analyzed in detail. But this is of small
comfort. Two-locus models are only one small step toward the ideal of the brute-
force research program. Many details of actual genetic systems have been left out of
the two-locus model and would also be left out of a ten-locus model. Although it is
possible that there is some real genetic system that behaves exactly like the two-
locus model, this is generally not the case. So we should be very careful to note that
this sort of defense of brute-force modeling as a fruitful goal is only applicable when
we are aiming at complete representation.

The more interesting case is where no general analysis of the model can be given
at all. In this case, a model generated by the brute-force approach will score poorly
on both of the explanatory virtues I have discussed. If a research program centered
around generating brute-force models in this domain could hope to achieve these
ends, then perhaps we could adopt the ideal of complete representation. However,
these are not the sorts of properties that are likely to fall into place with further
research. More data or greater computational power simply will not help. If there
are no analytical solutions and the dynamics of the model cannot be characterized in
some other way, this is a mathematical limitation. Thus a research program which
had complete representation as its representational ideal and required the use of
enormously complex sets of equations to describe its models would not make pro-
gress toward its goal at all. It would be better in such a case to take the construction
of idealized models as a goal, perhaps with the proviso that the models should
represent the most important causal factors.

Brute-force models would have no meaning for us

While Levins’ first two criticisms of the brute-force approach deal with fundamental
issues confronting modelers, it is perhaps his third criticism which has the greatest
philosophical insight and significance. Apparently conceding the possibility that
numerical solutions for extremely complicated models may be possible one day,
Levins writes that ‘‘Even if soluble, the result expressed in the form of quotients of
sums of products of parameters would have no meaning for us’’ (Levins 1966, p. 19).
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Even if we can perform calculations based on very complicated models using
computers, those solutions will not be valuable since they ‘‘have no meaning for us.’’
I think that understanding this claim is the key to understanding much of Levins’
perspective on modeling. What does it mean to say that a numerical solution has no
meaning for us?

I believe that the expression ‘meaning for us’ means ‘understanding the model.’
Thus Levins is claiming that while we might be able to make excellent predictions
with brute-force models if we can numerically solve the relevant equations using a
computer, such complex calculations will leave us completely in the dark about why
the target system behaves the way it does. It tells us nothing about how the system
works and would provide little guidance about how similar systems behave.

Levins’ other criticisms of the brute-force approach are largely pragmatic, but
the third criticism speaks to a much deeper issue. Levins claims that brute-force
generated models are not explanatory. Since almost all scientists and philosophers
accept explanation as one of the most important goals of theoretical practice, this
criticism effectively undermines the brute-force approach if it is correct.

Unfortunately, Levins does not elaborate on the incompatibility between the
brute-force approach and explanation in ‘‘The Strategy’’ or other work. However,
there are several possible ways to defend Levins’ position. The first possibility points
to the cognitive limitations of scientists and other consumers of scientific theories. As
Levins indicates at the beginning of his section on the brute-force approach, these
models are going to be really complicated, often consisting of hundreds of differ-
ential equations. Humans are incapable of grasping such complex dynamics and the
associated several hundred dimensional state-space. These models cannot really be
thought about as wholes, they can only be manipulated on computers and, perhaps,
thought about a bit at a time. Little philosophical work has been produced on this
issue, but I think it is an important one to pursue.5

Another possibility is that in their attempt to be complete, brute-force models
give us little insight about the relative importance of the factors giving rise to a
behavior of interest. If I throw a brick through the window, the complete causal
explanation of this event will be very detailed and include information about the
molecular structure of the glass, the density of the brick, the brick’s exact velocity, its
mass, and so forth. Most of these details do not make a difference to the occurrence
of the breaking and what does explain the glass being broken is that an object was
thrown with such and such a momentum at a fragile window (Strevens 2004). A good
explanation will discriminate the difference makers from the rest of the causal
factors which played a role in generating the explanandum. Brute-force models
include all of the factors, but our explanatory practices may demand more dis-
crimination.

Finally, and this may be related to finding the difference makers, brute-force
models are tailored to very specific phenomena. They will often not generalize
beyond the particular phenomenon one is considering and they will have very lim-
ited applicability to other possible, but non-actual phenomena. These two types of
generalizability are often thought to be connected to scientific explanation (Weis-
berg 2004). If any of the accounts of scientific explanation connecting generality to

5 The epistemolgical issues raised by computational science is one of the major themes of
Humphreys (2004).
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explanation turn out to be correct, then brute-force models are unlikely to be
explanatory.

Thus, there are several avenues one might pursue in defending Levins’ claim that
brute-force models will have no meaning for us. Each of these avenues is worth
pursuing for its own sake and for helping us gain greater insight into the problems
with the brute-force approach envisioned by Levins.

The idealization approach

In contrast to adopting the brute-force approach, one might accept from the outset
that some parts of the phenomena of interest are not going to be represented in our
models. We no longer even aim at producing complete models. When we build a
model of some phenomenon, we will try to include only the most important or the
most relevant aspects, which depends on the interests of the theorist.

A special problem confronts us when we adopt the idealization approach. How do
we know when to be satisfied with the accuracy of our models, given that we have
committed ourselves to their being inaccurate from the start? In the brute-force
approach, there is a simple answer to this sort of question. The aim is complete
representation of all of the causal forces that give rise to the behavior of the target
system to arbitrary degrees of accuracy and precision. Although almost every real
model falls short of this aim, brute-force modelers still believe that a more complete
representation is always a better one. Thus, the brute-force approach gives us a
highly principled way to structure our modeling practices.

The idealization approach obviously calls for different representational ideals, but
which ones? Enumerating the representational ideals associated with the idealiza-
tion approach is very difficult, for there are indefinitely many ways to idealize, only
some of them valuable. Even generating a list of the valuable ones is difficult, but
what we really want is an account that not only lists them but that can advise us
about which ones to adopt under which kinds of circumstances. Different types of
idealizations will result in models with different sets of virtues. No one has ever
given such an account, yet ‘‘The Strategy’’ is an important first step as it outlines
three approaches to modeling, each reflecting a different representational ideal.

Along with the complication of having many dimensions along which to relax the
representational ideal itself, Levins raises another problem in finding the principles
to guide idealization: the historical grounding of theorizing. During different stages
in the development of a science, different idealizations are appropriate. Levins’ own
example helpfully illustrates the point. In the early population genetics models of
Haldane, Fisher, and Wright, the environment was always assumed to be unchanging
and static. This was regarded as a reasonable idealization and many biologists
continue to use it to this day. Levins wants to criticize this particular idealization in
contemporary work, but make room for the use that the early theorists made of it.
He does this by arguing that for Haldane, Fisher, and Wright’s theoretical interests,
treating the environment as static was an acceptable idealization.

Fisher, Wright, and Haldane’s interests involved characterizing the central
properties of the major evolutionary forces. This involved many simplifications
which were necessary in order to isolate these forces and study them individually.
For example, they wanted to know how effective weak selection would be in
bringing about evolutionary change. They did this by building models where natural
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selection was the only evolutionary force, a highly idealized assumption. Levins
thinks that this was acceptable given the questions the founders of population
genetics wanted to ask. Their work did not require getting the dynamic details of the
environment correct. However, Levins thinks that many contemporary projects have
goals that do require including these details (Levins 1966, p. 19).

Context sensitivity in model building is actually part of a larger theme that Levins
and Richard Lewontin have emphasized. In the concluding chapter of The Dialec-
tical Biologist, Levins and Lewontin claim that a commitment to what they call the
dialectical world-view involves understanding that the correct division of a whole
phenomenon into parts depends on our theoretical interests. (Levins and Lewontin
1985) What this means in the context of modeling is that how we break up a phe-
nomenon into parts, and what features we choose to include and not to include in
our model, must be a function of our modeling goals. There will not be a single norm
that tells us how we should idealize in every case. Although this is a fairly extreme
view and is probably not shared among many modelers, it seems to motivate many of
Levins’ discussions, especially in his response to Orzack and Sober (1993).

Desiderata

Levins’ remarks about the historical grounding of theories are followed by his dis-
cussion of the desiderata of modeling and the different strategies associated with
them. He claims that there are four desiderata of model building: manageability,
generality, realism, and precision, but only the latter three are discussed. Although
well-illustrated with examples from the literature, Levins’ discussion does not con-
tain definitions for the desiderata. So we have to rely on his examples and related
discussion to determine the meanings of these terms.

Levins’ notion of generality is best illustrated in the contrasts he draws between
different kinds of models. One helpful contrast is the difference between Levins’
own highly general models of evolution in changing environments and the fishery
models of Watt (1956). Watt and co-workers constructed very complex mathemat-
ical models which include many factors known to have some effect on the phe-
nomena of interest. They tailored their models to particular target phenomena by
including specific causal factors associated with these systems and assigning weights
to these casual factors from measured quantities. Because of their level of detail and
specificity, the models only apply to a small number of phenomena.

Levins’ models are quite different. Only a few causal factors are included in these
models and many of the parameters are specified very imprecisely, leaving vague the
magnitude of the causal forces described by the model. However, these models apply
to many systems because few assumptions were made about the exact nature of the
target system being modeled.

Working from this example, Levins’ desideratum of generality is roughly the
number of target systems that a model can be applied to. Yet this notion of gen-
erality is ambiguous between two senses of the term: how many actual target systems
a model describes and how many logically possible systems a model describes. We
can call these a-generality and p-generality, respectively (Weisberg 2003, 2004). Most
of the time, Levins writes as if ‘generality’ means the number of actual target phe-
nomena a particular model applies to. However, many of his examples seem to be
general in the second sense. Consider one-locus models of the sort described by
Wright and Fisher. One way to look at these models is that they are approximations
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of how many real phenomena behave. This makes them general in the actual-
systems sense. But one-locus models also have a role in carving up logical space.
They tell us something about possible, but non-actual, phenomena with a certain
causal structure will behave.

Since there is no passage in the text that explicitly endorses one of these types of
generality, I suggest we simply leave this as an open question. Generality can be
understood either in the p-general or the a-general sense, and in fact, different uses
of models will require different senses of generality.

Realism

Like generality, Levins’ use of the term ‘realism’ is also ambiguous. In some pas-
sages, he uses the term ‘realism’ as a synonym for accuracy. In others, it is related to
diverse considerations including the number of factors included in the model and the
standards we use to evaluate the model.6

Even confining ourselves to defining realism in terms of accuracy, an ambiguity
remains. Is realism an assessment of how well the structure of the model represents
the structure of the world or is it an assessment of how close the output of the model
matches some aspect of the target phenomenon? In Levins discussion of the second
strategy of model building, it seems like he had in mind a match between the causal
structure of the world in and the mathematical structure of the model. He talks
about the structural features of simple Volterra predator-prey models as not being
very good representations of the world because they omit time lags, physiological
states, and density effects (Levins 1966, p. 19). However, in his discussion of the first
strategy of model building, Levins conceives of realism as predictive accuracy. He
discusses how fishery models can be used to make very accurate predictions and
takes this to be a mark of realism. They are realistic even though the structural
features of these models are not necessarily good representations of the world. Both
senses of accuracy are important and there is really no need to choose one or the
other until we find ourselves engaged in a detailed discussion of particular tradeoffs
or the value of a particular kind of model.

Precision

Precision ought to be the least controversial of Levins’ three desiderata. This is
because precision is a well-understood statistical property, formally defined as ‘‘the
closeness of repeated measurements of the same quantity’’ (Sokal and Rohlf 1981,
p. 13). This makes precision a property of data, not models or other representations.
Levins, however, describes precision as a property of models or the equations used
to describe models, not data. So we cannot simply import the definition of precision
from statistics.

Levins use of the term ‘precision’ is actually closer to the ordinary language use of
the term where precision means something like ‘‘fineness of specification’’. This
sense of precision can be given a statistical interpretation by associating precision
with the number of significant figures, or error involved in a measurement.

6 Levins (1993) contains a more detailed discussion of realism, and is the source for the broader
interpretation of its scope.
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Although Levins talks about sacrificing or gaining precision in modeling, it is best
to understand precision as a property of model descriptions, the equations or other
representations which specify models (Weisberg 2003, 2004, 2007; Godfrey-smith
2005, this volume). Precision is thus the fineness of specification of the parameters,
variables, and other parts of model descriptions.

Three strategies of model building

Maximizing the three desiderata of precision, realism, and generality might be
desirable, but, Levins argues, it is impossible. In what has become the most well
known part of ‘‘The Strategy,’’ Levins argues that when building models in popu-
lation biology, one can only maximize two of the three desiderata simultaneously.
Levins’ paper is often described as being about a three-way tradeoff between real-
ism, precision, and generality.

Levins does not actually use the term ‘tradeoff’ anywhere in the paper. In fact, in
a later article (1993), Levins suggests that he was only making an observation about
the state of population biology in the late 1960s, not making a logical claim that the
three desiderata cannot be maximized. Nevertheless, I think the article does pre-
sume some kind of three-way tradeoff between these desiderata. The text even
provides us with some clues about the nature of the tradeoff Levins envisioned. He
says that we cannot simultaneously maximize precision, realism, and generality. This
does not mean that it is impossible to increase the magnitude of all three properties
simultaneously. This is a weak tradeoff; it is not a zero-sum game situation where you
can only increase the magnitude of one of these properties by decreasing another.
If you started from some very low magnitude of the three desiderata, you could
increase the three of them simultaneously. However, if you start from a maximum
degree of two of the three desiderata, it will be impossible to increase the third,
without simultaneously decreasing the magnitude of one of the others.

Levins neither defends the existence of the three-way tradeoff nor does he even
use the term. However, almost everyone who has cited ‘‘The Strategy’’ has taken this
to be Levins’ intent. It is therefore natural to ask whether or not there really is a
three-way tradeoff between realism, generality, and precision.

Interpreted literally, Levins’ three-way tradeoff does not exist. Ironically, this is
because of the existence of a two-way tradeoff between precision and generality.
Precision tradeoffs off against p-generality and it is impossible to increase the
magnitude of one of these properties without decreasing the other. It is a strong
tradeoff. Strictly speaking there is no tradeoff between precision and a-generality.
Increasing precision makes the achievement of a-generality more difficult, but not
impossible (Weisberg 2003). Since it is impossible to increase precision and p-gen-
eralitly simultaneously, then one possible situation envisioned by Levins’ three-way
tradeoff—maximizing p-generality and precision—is impossible. Thus Levins’ three-
way tradeoff cannot really exist.

Although I am skeptical about Levins’ three-way tradeoff interpreted literally,
I do think that his identification of a ‘‘tradeoff’’ reveals important relationships
obtaining between the properties of models. For example, there are several deter-
minate relationships between precision and generality such as the one discussed
above. Similarly, there are relationships between precision and accuracy, which is

636 Biol Philos (2006) 21:623–645

123



one part of what Levins’ calls realism. While preliminary studies have revealed some
of the tradeoffs and other relationships between the properties of models, much is
still unknown. A full analysis of these properties would be an important addition to
our knowledge of the nature of theories and theory construction.

One of the most important reasons to develop an analysis of model properties and
their relationships is that this analysis will help us develop an account of rational
idealization. I think that this is the great insight of Levins’ discussion. To see how this
program could be carried out, let’s provisionally accept the existence of this tradeoff.
Levins uses it to describe three research strategies which are meant to be alternatives
to the brute-force approach. Each of these strategies can be thought of as embodying
a different representational ideal. If we enumerate representational ideals on the
basis of such constraints and analyze the value of these different ideals, we can
develop a theory of rational idealization. Such an approach is just under the surface
of Levins’ article and this, I believe, is the enduring importance of what Levins
accomplishes in ‘‘The Strategy.’’

Levins’ three strategies for model building fall straightforwardly out of the three
desiderata involved in the tradeoff. We can (1) sacrifice generality to gain precision
and realism, (2) sacrifice realism to gain generality and precision, or (3) sacrifice
precision to gain generality and realism.

First strategy: build precise and realistic models

The first strategy involves building models that are very realistic and precise, but
lack generality. These models are most useful to build when one’s primary interest is
in making quantitative predictions about the short-term behavior of a system. Levins
cites fishery biologists (e.g., Watt 1956) as being the major practitioners of this
strategy.

Constructing such models requires detailed and precise knowledge about the
system one is trying to model, for there are many parameters that need to be set.
After making many precise measurements, one feeds these results into the
description of the model in the form of parameters. When one wants to make a
prediction about a particular system, one also specifies the initial conditions very
precisely. Since realistic models of complex phenomena are mathematically un-
wieldy, these models will most likely require manipulation on a computer. Theorists
feed their measurements into a computer and are able to generate highly precise
predictions about very specific phenomena.

Levins has few general criticisms of this kind of modeling, perhaps because he
thinks its strengths and weaknesses are self-evident. Such an approach generates
highly accurate models useful for forecasting in limited domains. On the other hand,
they tell us little about analogous systems and aren’t very good at isolating the most
important factors that affect the evolution of the phenomena they model.

The first strategy of modeling is extremely similar to the brute-force approach, so
much so, in fact, that they may not be distinguishable. Levins may believe that this
strategy isn’t a form of the brute-force approach because it explicitly endorses the
sacrifice of generality. However, as I understand it, brute-force modeling only re-
quires complete representation of a particular phenomena; it has no requirement of
generality. Thus I actually think that Levins’ first strategy of modeling is a variant
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the brute-force approach and in his discussion of it, he simply gives us more details
about the problems associated with this approach.7

Second strategy: build general and precise models

Sacrificing realism to gain generality and precision is the second strategy of model
building. If you are willing to make a large number of approximations and work with
a highly abstract representation, you can generate precisely specified models that
will apply approximately to many target systems. This approach is especially con-
ducive to analyzing a model’s structure in significant mathematical detail.

An example of this strategy is the logistic model of population growth. If we take
the following model description:

dNðtÞ
dt
¼ r � r

K
NðtÞ

� �
N ð1Þ

and specify a precise value for r and K, we can describe the dynamics of this system
exactly. Such a model is not very realistic in that there are many factors that affect
population growth which are not included in the model. This means that even if the
model makes accurate predictions about the growth of a population, it could only be
thought to represent the actual process taking place if we set our standards of
adequacy low, allowing highly approximate and abstract representations. But this is
just what we expect when adopting the second strategy, the model is supposed to be
highly general and very precisely specified, but not necessarily an accurate
description of any particular phenomenon.

Levins associates the second strategy of modeling with the physicists who have
entered population biology. Whether or not this continues to be true today, for many
population biologists adopt something like the second strategy, Levins’ deeper point
is that these models are analogous to the idealized models used in physics. For one
thing, these simple models are analogous to ‘‘frictionless planes’’ for biological
systems. The comparison to the physical sciences is also apt in that modelers
adopting the second strategy have been able to borrow mathematical structures
directly from physics. For example, population biologists use a form of the diffusion
equation to model genetic drift. This equation was first developed to deal with
particles diffusing out in to space or among other particles, but can also be used to
model genetic drift and other stochastic biological processes (Roughgarden 1979,
p. 69).

One of Levins’ criticisms of the brute-force approach to modeling is that it gen-
erates models which do not admit of analytical solutions. In the more general version
of the criticism that I presented, brute-force models often do not allow for detailed
mathematical analyses. If one is especially concerned about this problem, then
models generated using the second strategy have special appeal. Not many models in
population biology admit of analytical solutions, but the ones that do are almost
always generated using the second strategy, such as the one-locus model of natural

7 One possible way for Levins to avoid the conflaction of the brute-force approach and the first
strategy is to point out that there are different loci for generality. One may be committed to a
research program that is highly general, but which will require brute-force models for individual
phenomena. So the techniques can remain general, while the individual models are not. Perhaps this
allows for a brute force strategy that is not, strictly speaking, the first strategy of model building.
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selection, the logistic growth model, and the Volterra predator-prey model. Al-
though only a small percentage of models generated using this strategy will admit of
analytical solutions, it tends to generate models with a very definite mathematical
structure on which mathematical analysis can be performed. This has enabled
important breakthroughs in population biology in areas as diverse as fundamentals
of evolutionary theory (e.g., Fisher 1930) and the biomedical sciences (e.g., Nowak
and May 2000).

Before moving to the third strategy, we should ask whether one can really adopt
the second strategy as characterized by Levins. I have already discussed the fact that
there is a strong tradeoff between precision and generality. Doesn’t this make the
second strategy an impossible one to pursue?

Strictly speaking, according to the way I have defined precision on behalf of
Levins, the second strategy would be quite difficult to pursue. One could find an
intermediate balance between precision and generality and perhaps simultaneously
increase the magnitude of both of these properties by attenuating realism somehow,
but still, you couldn’t pursue a strategy of gaining maximal generality and maximal
precision. The best you could do would be to maximize the conjunction of generality
and precision.

Yet there are clearly a cluster of models that Levins has identified with the second
strategy. These models are very simple, their structures are often borrowed from the
physical sciences, and they are often analyzed as algebraic structures alone, with no
values being specified for their parameters.

If precision means fineness of specification of the parameter values, then not
specifying parameters actually makes the description maximally imprecise. This
would have the result, of course, of maximizing generality. So ironically, maybe the
best way to characterize the second strategy of modeling is as follows: Sacrifice
realism and be maximally imprecise about the values of the parameters (i.e., algebra
only) in describing the model, so as to maximize generality. This correctly identifies
the physics-like models that Levins identifies with the second strategies and shows
why it is rational to pursue it.

Third strategy: build realistic and general models

The third strategy of model building involves sacrificing precision, to gain realism
and generality. Such models, according to Levins, are highly flexible and are often
described and analyzed graphically rather than algebraically. The parameters of the
model descriptions associated with these models are often specified in qualitative,
not quantitative, ways. In describing such a model, theorists might specify that a
particular quantity is increasing or decreasing, but wouldn’t specify the exact
numerical value for the parameter which controlled the shape of the curve. They
might specify that a polynomial term in the description is convex or concave, but not
give the exact value to the coefficient of this term. The results of these models, at
least in population biology, are sometimes expressed as inequalities, or using some
other kind of limiting functional form.

The third strategy of modeling is clearly Levins’ preferred mode of theorizing. It
figures prominently in his best known work from the period (e.g., Levins 1962, 1966)
and he was interested in offering it as a viable alternative to the second strategy,
which he associated with the highly unrealistic assumptions made by physicists
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studying biological systems. Yet surprisingly, Levins’ doesn’t defend the special
status of the third strategy nor does he give any explanation of its value in contrast to
the other strategies.

There are several reasons that one might adopt the third strategy. The simplest
reason is that precision is the least intrinsically valuable desideratum. If one needs to
make a highly precise prediction, then precision will be of value. But if not, there is
no particular reason that precision matters in scientific inquiry. Generality and
realism, however, are important for a much more fundamental goal of scientific
inquiry, giving scientific explanations. Realism is required for explanations because
we cannot explain something if we cannot even characterize it accurately. Generality
is required, according to some accounts, so that similar, but distinct phenomena can
be explained in a parallel way, leading to greater unification in our explanations
(Friedman 1974; Kitcher 1981). These are clearly advantages of the third strategy
and may be why Levins seems to favor the strategy above the others.

Toward a theory of idealization

I opened this section by claiming that the most important part of Levins’ paper is not
the tradeoff or even the strategies of modeling he outlines. Rather, the most
important part of the paper is the way Levins’ analysis gives us a template for
developing a theory of rational idealization. In concluding this section, let us con-
sider how this is so.

Levins’ analysis of three strategies modelers can adopt was driven by his identi-
fication of a three-way tradeoff he believed that they faced. A more expansive
analysis of the strategies of modeling could take into account other properties of
models and analyze the way in which these properties trade off or constrain one
another. The analysis would begin by looking at properties similar to accuracy and
generality, but could also go on to consider theoretical desiderata of specific special
sciences or even of human cognitive capacities.

The next step would be to analyze the value and importance of each desideratum.
Not all theoretical desiderata are intrinsically valuable and even those that are may
be more important in particular scientific contexts than in others. Levins performs
this kind of analysis at points in ‘‘The Strategy,’’ but it is a project that needs to be
carried out in much greater detail.

Once we understand the intrinsic and instrumental value of the various desiderata
associated with modeling, we can combine this information with our knowledge of
tradeoffs to build a theory about rational idealization. For example, if we believe, as
Levins seems to, that generality is associated with explanatory power, we might
recommend the construction of highly general models for explanations. We would
consider the various ways to increase generality and develop strategies, such as
Levins’ third strategy, which would achieve this goal with low cost for other
explanatorily important values.

Robustness

The final section of ‘‘The Strategy’’ discusses the notion of robustness, or what
Wimsatt (1981) calls robustness analysis. Pre-theoretic intuition and traditional
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philosophy of science suggest that as theoretical practice matures, we will see a
gradual unification and reduction of the number of models for particular target
systems. However, if we take Levins’ picture of model building seriously, we are
assured that theoretical practice will continue to generate a proliferation of models.
Since different models score better with respect to the different desiderata, we will
expect scientists to continue generating multiple models for a given phenomenon. In
addition, because all models will contain idealizations, within particular strategies
multiple models may also be generated incorporating different idealizations.

One might lament this fact and work toward the eventual elimination of multiple
models in favor of a single or small set of models for a particular phenomenon, but
Levins thinks that there is a special value in having multiple models. Since modelers
deal in idealizations, all of their models are false. Yet when a model makes a pre-
diction or purports to explain something, we need a way of determining ‘‘whether a
result depends on the essentials of the model or on the details of the simplifying
assumptions’’ (Levins 1966, p. 20). Levins proposes that we do this by searching for
robust theorems. ‘‘[I]f these models, despite their different assumptions, lead to
similar results, we have what we can call a robust theorem that is relatively free of
the details of the model. Hence, our truth is the intersection of independent lies.
(20)’’

The terminology is a little misleading here. A robust theorem is not a theorem as
conventionally understood. It is a conditional statement linking a common structure
of a set of models, to some behavioral or static property predicted by those models.
Levins claims that when we discover a property or dynamic that is implied by
multiple models, we can be more confident that this theorem does not depend on the
idealizations we have made. Instead, it depends on core causal properties shared by
the set of models.

Robustness analysis seems to be some kind of confirmation procedure, one that it
applicable in situations where all of the models are false and highly idealized. For
example, Levins considers the following statement to be a robust theorem:

In an uncertain environment species will evolve broad niches and tend toward
polymorphism (Levins 1966, p. 20).

This result, he tells us, can be derived from three kinds of models: the fitness set
model (Levins 1962), a model using the calculus of variation, and a genetic model
(Levins and MacArthur 1966).8

Several attempts have been made to further articulate Levins notion of robust-
ness. In a critical article by Orzack and Sober (1993), robustness analysis is taken to
be a simple, non-empirical method of testing hypotheses. They envision the modeler
looking at an exhaustive set of models and determining whether a particular
hypothesis is a logical consequence of each of the models. Only in the special case
where a theorem is a logical consequence of each and every model, they argue, is the
hypothesis confirmed by robustness analysis.

It is unlikely that such an analysis could be carried out, for no theorist can really
generate an exhaustive list of all possible models for a particular phenomenon. Even
if such a list could be given, it is extremely unlikely that the very same theorem

8 Subsequent research (e.g., Seger and Brockmann 1987) has called in to question whether this
particular phenomenon is actually robust.
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would be a logical consequence of each model. Orzack and Sober are clearly aware
of this and hence are quite skeptical of robustness analysis. There is every reason to
be skeptical of robustness analysis as characterized by Orzack and Sober, yet I
believe that they have given an overly stringent interpretation of the procedure.
Levins was not offering an alternative to empirical confirmation; rather, he was
explaining a procedure used in conjunction with empirical confirmation in situations
where one is relying on highly idealized models.

Another analysis of robustness was offered by Wimsatt (1981) who considers the
technique to be part of a much broader set of procedures where one attempts to
isolate the core components of a process. He writes that

[A]ll the variants and uses of robustness have a common theme in the distin-
guishing of the real from the illusory; the reliable from the unreliable; the
objective from the subjective; the object of focus from artifacts of perspective;
and, in general, that which is regarded as ontologically and epistemologically
trustworthy and valuable from that which is unreliable, ungeneralizable,
worthless, and fleeting (Wimsatt 1981, 128).

Thus, for Wimsatt, everything from ‘‘[u]sing different experimental procedures to
verify the same empirical relationships’’ to‘‘[u]sing different assumptions, models,
or axiomatizations to derive the same result or theorem’’ to ‘‘[u]sing failures
of invariance ... to calibrate or recalibrate our measuring apparatus’’ are part of
robustness analysis (Wimsatt 1981, 127).

I have a much less expansive understanding of Levins’ notion of robustness than
Wimsatt does. As I read Levins, finding a robust theorem means finding that a set of
diverse models imply the existence of the same dynamic or property. When we find
such a robust property, robustness analysis involves examining the core structure of
the models that implied this result. If there is some core causal structure in all of
these models that gives rise to the robust behavior, we have confirmed, ceteris
paribus, the connection between a certain causal structure and the robust property.

By showing that a dynamic or property is robust, we have shown that it is char-
acteristic of the core causal structure. Whenever the causal structure which is
common to the models is instantiated in a real target system, we can expect to see
the robust property or dynamic. Finding that the robust theorem is implied by each
member of a set of diverse models is necessary to show that this property or dynamic
is independent of the extraneous details of the models and only depends on the
shared, core causal structure.

An example of this kind of robustness is the discovery of the Volterra Principle.
The Volterra Principle says that ‘‘the result of a general insecticide will be an in-
crease in the abundance of the pests, themselves, whereas the number of the pre-
dators on the pests will decrease.’’ (Roughgarden 1979, p. 439) This principle was not
discovered empirically, but by robustness analysis. Although it was first derived
using the simple Volterra model of predator-prey interactions, it arises in many
other models. Specifically, it ‘‘arises in any model in which the abundance of pre-
dators is controlled mostly by the growth rate of the prey and the abundance of prey
by the death rate of the predators’’ (Roughgarden 1979, p. 439).

If we understand the Volterra Principle as a robust theorem, then we can give a
Levinsonian explanation of the principle’s significance as follows: A number of re-
lated, but distinct models of predator-prey interaction all describe a certain dynamic
between predator and prey which ecologists now call the Volterra principle. This
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theorem is robust and comes about in any model that represents a certain causal
structure. What this tells us is that in any possible system with this casual structure,
regardless of other details, will be an instantiation of the Volterra principle. In this
sense, the Volterra principle gains a measure of confirmation via its being a robust
theorem.

Robustness analysis is a procedure followed by many modelers and is thought to
confer a confirmation-like status on robust hypotheses. This is something that has
been neglected by most philosophers of science and we have a lot to learn by
thinking carefully about it. While Levins deserves much credit for emphasizing the
importance of the procedure, his original discussion gives us few clues as to how and
why the procedure works. This, I suspect, has led critics like Orzack and Sober to be
highly critical of the idea.

Differing from the analyses of Orzack and Sober, Wimsatt, and Levins
(in response to Orzack and Sober), I think the robustness analysis is simply a way of
isolating a core structure which is common to multiple models and then determining
the consequences of this core structure. The procedure itself does not confirm
hypotheses; rather, it identifies an already well-confirmed sub-structure contained in
a number of models and shows what must follow from this consequence. The result is
the partial confirmation of conditional statements such as ‘‘whenever you have
positive coupling of kind P between predator and prey, you will expect a dynamic
like D.’’ This is defended and explained in much greater detail in Weisberg (2006)
and Weisberg and Reisman (ms-b).

Conclusion

Few papers, scientific or philosophical, seem as relevant 40 years after publication as
they did when they were first published. Levins’ insights about the nature of theo-
retical practice were more nuanced than many well-known philosophical accounts of
theorizing from the 1960s. Perhaps this accounts for why it has taken the greater part
of 40 years to start incorporating Levins’ ideas into accounts of modeling, confir-
mation, and idealization.

Undoubtedly Levins’ article will always be remembered in connection with the
three-way tradeoff between realism, generality, and precision. This is certainly an
important reason to remember the paper and has led to a number of insightful
discussions in both the biological and philosophical literature. However, as I hope to
have made clear, the paper should also be remembered for its emphasis on the
practice of theorizing, not just the outcome of theorizing. This takes us outside the
comfortable realm of analyzing theories, and into the murkier realm of the goals and
intentions of modelers.

The paper should also be remembered as an important lesson about how to
construct an account of idealization. The articulation of the strategies of modeling
and then an analysis of the advantages and disadvantages of these strategies is a
crucial step in such an account. Finally, the article should be remembered for
drawing our attention to the special issues that arise in the context of confirming
highly idealized theories. Accounts of confirmation may need to make room for
robustness analysis and the other techniques used for dealing with the proliferation
of models for complex systems.
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‘‘The Strategy’’ and Levins’ work on theoretical methods is finally getting the
attention it deserves by those who write about theories and theorizing. My hope is
that when the students of my own students write ‘‘Eighty Years of ‘The Strategy,’ ’’
philosophy of science will look quite different and will have fully absorbed what
Levins began teaching us about theoretical methods 40 years ago.
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